425 research outputs found

    Applications of system identification methods to the prediction of helicopter stability, control and handling characteristics

    Get PDF
    A set of results on rotorcraft system identification is described. Flight measurements collected on an experimental Puma helicopter are reviewed and some notable characteristics highlighted. Following a brief review of previous work in rotorcraft system identification, the results of state estimation and model structure estimation processes applied to the Puma data are presented. The results, which were obtained using NASA developed software, are compared with theoretical predictions of roll, yaw and pitching moment derivatives for a 6 degree of freedom model structure. Anomalies are reported. The theoretical methods used are described. A framework for reduced order modelling is outlined

    The principles and practical application of helicopter inverse simulation

    Get PDF
    Inverse simulation is a technique whereby the control actions required for a modelled vehicle to fly a specified manoeuvre can be established. In this paper the general concepts of inverse simulation are introduced, and an algorithm designed specifically to achieve inverse simulation of a single main and tail rotor helicopter is presented. An important element of an inverse simulation is the design of the input functions i.e. manoeuvre definitions, and the methods used are also detailed. A helicopter mathematical model is also discussed along with the validation and verification of the inverse simulation. Finally, the applicability of the method is demonstrated by illustration of its use in two flight dynamics studies

    Modification of a helicopter inverse simulation to include an enhanced rotor model

    Get PDF

    Linking phytoplankton community metabolism to the individual size distribution

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this recordQuantifying variation in ecosystem metabolism is critical to predicting the impacts of environmental change on the carbon cycle. We used a metabolic scaling framework to investigate how body size and temperature influence phytoplankton community metabolism. We tested this framework using phytoplankton sampled from an outdoor mesocosm experiment, where communities had been either experimentally warmed (+ 4 °C) for 10 years or left at ambient temperature. Warmed and ambient phytoplankton communities differed substantially in their taxonomic composition and size structure. Despite this, the response of primary production and community respiration to long- and short-term warming could be estimated using a model that accounted for the size- and temperature dependence of individual metabolism, and the community abundance-body size distribution. This work demonstrates that the key metabolic fluxes that determine the carbon balance of planktonic ecosystems can be approximated using metabolic scaling theory, with knowledge of the individual size distribution and environmental temperature.NERC. Grant Number: PASW06

    The potential impact of adverse aircraft-pilot couplings on the safety of tilt-rotor operations

    Get PDF
    This paper addresses the potential impact of adverse aircraft-pilot couplings on tiltrotor safety, when a pilot or autopilot attempts to constrain flight dynamics with strong control. The work builds on previously published research on the theory and application of constrained flight to fixed- and rotary-wing aircraft. Tiltrotor aircraft feature characteristics from both types of aircraft and how these determine behaviour in a unique manner is investigated using a FLIGHTLAB simulation model of the XV-15 aircraft. Two different scenarios are explored in detail, using linearised models that reflect the flight-physics of stability for small deviations from trim. First, the control of vertical flight path with longitudinal cyclic pitch and elevator, and the consequences for the stability of the aircraft surge mode and short-period pitch-heave mode. The classical surge-mode instability for flight at speeds below minimum power is shown to apply to the tiltrotor in helicopter mode but alleviated in conversion and airplane modes. The impact on the short–period mode is seen to be a trade-off between the stabilising pitch attitude and destabilising incidence (angle-of-attack) contributions to the flight-path angle. The second example concerns strong control of roll attitude in the presence of adverse aileron-yaw. Here, the yaw-sway motion can be driven unstable, a problem encountered on fixed-wing aircraft with weak weathercock stability, but rare in the rotorcraft world. For both examples, the loss of stability is expressed as the change in sign of effective damping or stiffness stability derivatives. The explanatory theory for these non-oscillatory or low-frequency aircraft-pilot couplings is presented, along with interpretations in terms of handling qualities criteria. The paper also addresses the question of how to translate the findings into a form of aeronautical knowledge useful for the pilot training community.European Union fundin

    Persistence of an outbreak of gonorrhoea with high-level resistance to azithromycin in England, November 2014‒May 2018

    Get PDF
    Between November 2014 and May 2018, 118 laboratory-confirmed cases of high-level azithromycin resistant Neisseria gonorrhoeae were identified in England. Cases emerged among heterosexuals in Leeds but spread across England and into sexual networks of men who have sex with men as the outbreak progressed. The few epidemiological links identified indicate substantial under-diagnosis of cases and this, along with the upturn in cases in 2017, highlights the difficulties in controlling the outbreak
    • …
    corecore